EXHIBIT/P-00097

Helicopter Underwater Emergency Breathing Apparatus (HUEBA)

Offshore Helicopter Safety Inquiry November 23 & 24 ,2009

Presenter:

Greg Harvey Offshore Safety & Survival Centre Marine Institute

Introduction

Review the rationale for HUEBA
Review HUEBA equipment and operation
Identify the hazards and limitations associated with using HUEBA
Review HUEBA practical

2007 world-wide offshore helicopter operational data: (OGP Report 2009) Over 9 million passengers Over 900,000 flying hours 10 accidents 5 fatalities • 5 year average: 16 accidents 5.8 fatalities

Out of 110 accidents: (Taber & McCabe 2006)
69 (63 %) capsized
27 remained afloat
38 sank

Capsize equally likely in both ditching and crash landings: (Cliffords 1996)

- 69% controlled
- 56% limited control
- 65% fly-ins
- 68% uncontrolled

83% of UK military fatalities due to drowning with only 17% due to impact injuries (Cliffords 1996)

High incident of capsize = high incident of drowning
Cause of drowning;

Incapacitation due to injury
Disorientation
Jammed or obstructed exit

Cold Shock single most important factor limiting escape of an uninjured person

- Suggested times required to escape from a capsized helicopter are between 40 – 60 seconds (Tipton et al, 1997)
- Average breath-hold times: (Cheung et al, 2001)
 - 25 C = 37 s
 - 16 C = 29.7 s
 - 1 C = 15.9 s
 - Cold Shock BHTw as little as 6s with average < 20s (CAA Report 2003)
- Need to bridge the gap between breath-hold and escape time

Two Solutions

1) Re-breather

Survival in the Sea Project (Shell) 1989

- Extent underwater survival time
- Without introducing additional dangers
- Simple to use
- Air Pocket_® Re-breather
 - Counter lung, hose, mouthpiece and nose clip
 - Allows respiratory movement
 - Re-breathe 2 to 4 times as long as holding breath

Two Solutions

2) Compressed airMilitary worldwide

Compressed Air HUEBA

HUEBA - Helicopter Underwater Emergency Breathing Apparatus aka:

- EBS Emergency Breathing System
- HEED Helicopter Emergency Egress Device
- HABD Helicopter Aircrew Breathing Device
- HEBE Helicopter Emergency Breathing Equipment
- UER Underwater Escape Re-breather
- STASS Short Term Air Supply System
- APP Air Pocket Plus
- SEA Survival Egress Air

Compressed Air HUEBA

First HEBE developed in 1975 Early 1980's US Navy and Canadian Forces started using 'Spare Air' 1986 Canadian Forces switched to HEED2 • 1990 US Navy switched to US Divers Inc HABD 1994 Canadian Forces switched 1992 Royal Navy started using STASS 1993 unit for ordinary passengers P-STASS 2000 CAPP starts looking into EBS 2004 selects US Divers SEA LV2

Benefits of HUEBA

HUEBA benefits include additional time to: (CAA Paper 2003/13)

- Overcome panic
- Overcome disorientation
- Release a jammed or snagged seatbelt
- Identify alternate exits
- Cross fuel cell to exit
- Jettison an exit
- Overcome any snagging due to structural damage of the airframe
- Overcome impact injuries

Equipment & Operation

Aqua Lung Survival Egress Air (SEA-LV2 Exxon)

Aqua-Lung EBS

Helicopter Aircrew Breathing Device (HABD)

Survival Egress Air MK (SEA-MK)

Survival Egress Air LV2 (SEA-LV2)

GEN 1

GEN 2

OSSC Presentation to Offshore Helicopter Safety Inquiry GEN 3

SEA LV-2 (Exxon) Major Components

Cylinder

Cylinder Specifications	
Air Volume	1.5 cu/ft / 42.5 liters
Service Pressure	3000 PSI / 207 BAR
DOT Test Pressure	5000 PSI / 345 BAR
TC test Pressure	4500 PSI / 310 BAR
Aluminum Alloy	6061-T6

1st Stage

Hose Assembly

Swivel adapter
Hose

28 inches
3/16 I.D.
Low pressure

2nd Stage

Low volume
Open circuit demand valve
Indexable mouthpiece
One-way exhaust valve
Purge button

Helicopter Safety Inquiry

Breathing Routine

Place 2nd stage mouth piece in your mouth and breathe

- If necessary (U/W) clear the second stage
 - Blast method
 - Using purge button

Inhale first breath cautiously

When to use HUEBA

Deploy just before submersion
 If unable to deploy prior to submersion
 Decide whether to escape without HUEBA
 Deployment could delay escape by 5 to 10 s
 Deploy and clear HUEBA

HUEBA Limitations

Intended for use as an emergency egress device

Limited air supply with endurance depending on:

- Breathing rate
- Work rate
- Water temperature
- Depth
- With or without face mask
- Charge in cylinder

HUEBA Malfunctions

Leakage or free flow of air from second stage

- Freeze-up
 - Regulator will freeze open
- Purge button depressed/stuck
- Flooding 2nd stage
 - Mouth piece
 - Diaphragm
 - Exhaust valve

Direct Effects of Pressure

Boyles Law

"For any gas at a constant temperature, the volume of the gas will vary inversely with the pressure."

Boyles Law

The following air filled spaces are affected by pressure and density changes:

- sinuses
- ears
- mask
- suit
- Iungs

If the pressure in these air filled spaces is not equalized then a barotrauma injury may occur

Lung Expansion Injuries

Normally caused by

- Holding your breath
- Inflammation and blockage of smaller bronchial passages
 - As a result of a chest cold, asthma, emphysema or bronchitis

Can occur in as little as 1 meter of water

Lung Expansion Injuries

Lung Expansion Injuries

There are four principal lung expansion injuries

- Pneumothorax
- Mediastinal Emphysema
- Subcutaneous Emphysema
- Arterial Gas Embolism (AGE)

Signs & Symptoms occur immediately upon surfacing or shortly (within 15 min) after

Practical Exercises

Practical Exercise Objectives

Demonstrate:

- donning a flight suit with HUEBA equipment
- preflight checks
- deployment and operation of HUEBA equipment
- Breathing actions including
 - Breathe u/w
 - Deploy and clear HUEBA while u/w
 - Deploy and clear HUEBA while inverted u/w

Preflight Checks and Donning

Photo: J Boone

Pre-Breather

Unlimited air supplyLV-2 second stage

Photo: J Boone

Pre-Breather

Practice Normal breathing pattern Clearing 2nd stage Purge method Blast method

OSSC Presentation to Offshore Helicopter Safety Inquiry Photo: J Boone 35

HUEBA Operation

Practice

- Deploying HUEBA
- Normal breathing pattern
- Deploying HUEBA u/w
- Clearing 2nd stage
 Purge method
 Blast method
- Breathe HUEBA down while u/w

Photo: J Boone

Emergency Breathing System Inversion Chair (EBSIC)

Designed to provide a controlled way of inverting students
 4 point harness
 Emergency release

OSSC Presentation to Cristione Helicopter Safety Inquiry

Photo: J Boone 37

EBSIC

Practice

Deploying HUEBA
Normal breathing pattern while inverted
Deploying HUEBA u/w while inverted
Clearing 2nd stage u/w while inverted
Purge method
Blast method

References

- OGP Safety performance of helicopter operations in the oil & gas industry – 2007 data *Report No. 424 August 2009.* <u>http://www.ogp.org.uk/pubs/424.pdf</u>
- Taber & McCabe 92006 SAFE Journal 34(1), 5-10
- Cliffords (1996) in CAA PAPER 2003/13 Preliminary Study of the Implementation and use of Emergency Breathing Systems. <u>http://www.caa.co.uk/docs/33/CAPAP2003_13.PDF</u>
- Tipton et al (1997) An examination of two emergency breathing aids for use during helicopter underwater escape. Aviat. Space Environ. Med68 (10): 907-14
- Cheung et al (2001) Breath-Holding Ability of Offshore Workers Inadequate to Ensure Escape from Ditched Helicopters. Aviation, Space, and Environmental Medicine Vol 72, No 10